
Unit V - Differential equations 1

Unit V

Differential Equations

Unit V - Differential equations 2

Differential equations

• explicit one-step methods

– Euler method

– improved Euler method

– analysis of explicit methods

• Runge-Kutta methods

• adaptivity and stiffness

• multi-step methods

Unit V - Differential equations 3

Integration of ODEs

• ODE = ordinary differential equation
– involves functions of a single variable and the derivatives

• order = the highest derivative

• we concentrate on solving
– first order ODEs

– systems of first order ODEs

because...
– a higher order ODE can be reduced to an equivalent system of

first order ODEs

Unit V - Differential equations 4

Integration of ODEs

• use the intermediate variable z(x) as shown

• first we examine methods for numerical solution of a
single first order equation

Unit V - Differential equations 5

First order ODE

• the general first order ODE is

• f is an arbitrary function

• y = y(t) or y = y(x) according to context
– independent variable often is t (time) to reflect ODE use in a

dynamic problem

OR

Unit V - Differential equations 6

System of first order ODEs

• most general is a coupled set of N ODEs

• given functions fi that define the ODE

• find function(s) yi(x) called solutions of the ODE

• this process is called integrating the ODE

• we could ask first about uniqueness

Unit V - Differential equations 7

Uniqueness of solutions

• to get a unique solution you need some constraints on yi

• these are called boundary conditions
– algebraic relationships between the solutions

– defined at specified discrete points

– not valid elsewhere

– simplest is to specify yi values at given point(s)

– most complex is a system of nonlinear equations relating the
solution functions (differential algebraic equations = DAEs)

Unit V - Differential equations 8

Boundary conditions

• the type of boundary conditions determines the numerical
tactics which work best

• initial value problem (IVP)
– given values yi(xs) for all the yi at the same initial point xs

– to find values of yi(xf) at some final point xf

– values yij = yi(xj) at discrete intermediate points xj, xs < xj < xf may
also be required

• 2-point boundary value problem
– some values given as yi(xs)

– other values given at yi(xf)

– a more difficult problem

• the general first order IVP is y' = f(x,y), y(x0)=y0

Unit V - Differential equations 9

Connection to definite integral

• if y is a function only of x a first order IVP is just a definite
integral

• y' = f(x), y(x0)=y0 is the same as

• so we could apply numerical quadrature techniques to
solve it

• we know that many integrals have no unique closed form
analytical solution

• so we can expect existence of solutions to the general IVP
will be more problematic

• we tackle the problem numerically

Unit V - Differential equations 10

Use iterations to solve an IVP

• we want the solution y(x)
– or specifically y(xf) for some value x = xf of interest

• approximate y(x) by a sequence of discrete values

y(x0), y(x1), y(x2), ..., y(xf)
– start at the initial x-value x0

– increment by step h

– arrive at the final x-value xf

• example: solve y' = sin(x2), y(0)=0
– for a simple case like this [i.e. y=f(x) only] something like trapezoid

integration works

– the Matlab functions trapz and cumtrapz are useful to illustrate

• numerical methods for IVPs follow this kind of step-by-step
method to walk to the solution

Unit V - Differential equations 11

Trapezoidal scheme

• in the simple case we can get the next yi value in one
step

• but this doesn’t work for the general case

• the unknown y1 appears on both sides of the equation
– we can’t evaluate f(x1,y1) because we don’t know y1 yet

Unit V - Differential equations 12

Trapezoidal scheme

• write the equation as implicitly defining y1 and solve

using something like Newton’s method

• repeat the process at each step to get y2, y3, values

• this is called the trapezoidal scheme
– an implicit method

– useful for some special cases (e.g. stiff equations)

– more efficient explicit methods are available

Unit V - Differential equations 13

Explicit approach

• Euler tactics:
– approximate dy/dx by a forward difference "1f = "y/"x

– multiply the equation by "x

– you get algebraic formulas for the change yi as x is stepped one
step-size h = "x

– if h is ‘small enough’ you MAY get a good approximation to the
solution

• in practice ... Euler au nature is
– not very accurate

– not very stable

• in theory... it is the fundamental conceptual basis for most
ODE solution methods:

• add small increments of derivatives (right hand side
functions) times step-sizes to your functions

Unit V - Differential equations 14

Euler tactics by first difference

• so we define the Euler step by

• we neglect the truncation errors introduced by using first
differences

Unit V - Differential equations 15

Euler’s method

• the derivative at the starting point of each interval is
extrapolated to find the next function value

• yi+1 = yi + h f(xi,yi)

Unit V - Differential equations 16

Euler tactics by Taylor series

• the Euler step can also be derived from a truncated
Taylor series

• y'' must exist for this to work

• truncation error is O(h2) for one step so ...

• the method has O(h) accuracy

Unit V - Differential equations 17

Euler is unstable

• the Euler step relies on first differences so ...

• we cannot really e x p e c t stability

• truncation error
– accuracy is O(h) at a fixed point x

– so you can improve accuracy by reducing stepsize but ...

– ... only if you stay at the same x value

– if x moves the solution walks away across the one-parameter set
of solution curves

– error grows with increasing x and decreases with decreasing h

• what about roundoff error?
– also an issue

– must be wary of making h too small

Unit V - Differential equations 18

Example: Euler steps

Apply Euler steps to the ODE IVP y' = 1+y2, y(0)=1. True solution is

y(x)=tan(x+!/4). Use h=0.5 and solve over [0,2].

Unit V - Differential equations 19

Example: Euler steps are O(h)

Apply Euler steps to the ODE IVP y' = y, y(0)=1. True solution is

y(x)=ex. Start with h=0.5, continuously halve the step size, and check

the error at each stage.

Unit V - Differential equations 20

Improving the Euler step

• Euler is O(h) because

• it uses f(xi,yi) to extrapolate across the interval [xi,xi+1] to
get a value for y(xi+1)
– in reality the slope is changing across that interval

– ... and possibly rapidly

• the trapezoidal scheme gets O(h2) because

• it uses values at BOTH endpoints to estimate the slope
but
– it’s an implicit method, so less useful in practice

• viewed in terms of quadrature
– Euler uses the left endpoint scheme

– trapezoidal uses the trapezoid method

• a midpoint scheme is a good alternative

Unit V - Differential equations 21

Midpoint schemes

• we use the midpoint quadrature method to get the
midpoint scheme for ODEs:

– here we have

– but we don’t have an estimate for y(xi+1/2) of course

• so how to get an explicit method out of this?

Unit V - Differential equations 22

Improving the Euler step: geometric

• using f(x,y) at the left starting point (1) to ...

• find the midpoint (2)

• then use f(x,y) at the midpoint (2) to update (1) and ...

• find a better path to the end point (3) where x2 = x1+h

Unit V - Differential equations 23

Improving the Euler step: algebraic

• we estimate the y-value at the midpoint by

– both x and y values at the midpoint are used to update the
solution

– the slope for the real step across the interval is estimated using
an Euler step and ...

– adjusted to improve the overall performance

– symmetry cancels first order error terms, so the method is O(h2)

Unit V - Differential equations 24

Improved Euler methods

• the explicit midpoint method is one way to improve Euler

– the (unknown) y value at the midpoint is estimated using an Euler
step

• the explicit trapezoid method is another alternative

– the (unknown) y value at the right endpoint is estimated using an
Euler step

Unit V - Differential equations 25

Example: Improved Euler method

Solve y' = x + y2 , y(0) =1 using the explicit midpoint method with step

size h = 0.1 .

Unit V - Differential equations 26

Example: Improved Euler method

Solve y' = x - y , y(1) =1 using the explicit midpoint scheme

with h = 0.1 [the exact solution is y = x - 1 + e1-x]

Unit V - Differential equations 27

Predictor-corrector shemes

• a predictor-corrector method turns an implicit scheme
into an explicit one
– the updated y-value is written as

– p1, ..., pn are parameters, e.g. xi, yj etc.

– the explicit scheme (the predictor) is used to get the RHS above

– the implicit scheme (the corrector) is used to improve the solution

• repeated prediction-correction steps can be used

Unit V - Differential equations 28

Three ways to reduce error

1. use a higher-order method
– more difficult to program

– require additional differentiability conditions

2. use a smaller step size h
– takes longer to converge

– can lead to propagation of roundoff error

– converges to the exact solution of the ODE in the absence of
roundoff error

3. use repeated corrections
– takes longer to calculate

– converges to an exact solution of a discrete approximation to the
ODE

• there is no RIGHT way hence the variety of
available methods

Unit V - Differential equations 29

Step sizes

• second order methods use
– two function evaluations to take ...

– a step of size h

• first order methods can use
– two function evaluations to take ...

– 2 steps of size h/2

• for small h
– the O(h2) error of the second-order method is almost certainly

smaller than

– the O(h/2) error of the first-order method and half-size step

• choose the step size as large as is consistent with
desired accuracy

Unit V - Differential equations 30

Heun’s method

• Heun’s method uses the predictor

with the corrector

• this is a weighted average of
– 1/4 times the slope at the left endpoint and ...

– 3/4 times the slope 2/3 of the way along the interval

• the method is O(h2)

Unit V - Differential equations 31

The theta method

• the theta method uses a weighting

– Euler is % = 1

– trapezoidal scheme is % = 1/2

– backward (or implicit) Euler is % = 0

• all theta methods are O(h) except the trapezoidal scheme

Unit V - Differential equations 32

Explicit one-step methods

• an explicit one-step method is of the form

– the increment function depends on f and its derivatives

– explicit because everything is known here and...

– one-step because only one step is used to get the next y-value

• an implicit one-step method involves unknown quantities
on the RHS of the step equation
– backwards Euler

– all theta methods (except for Euler itself)

• an explicit multi(k)-step method uses a similar formula
with k previous y values to get the next one

Unit V - Differential equations 33

Two ways to assess error

• the local truncation error of an explicit one-step method at

a point xi is ...

– LTEi+1 = yi+1 - [y(xi) + h#(xi,y(xi),h)]

– the difference between y(xi+1) and the value we would have got for

yi+1 if we had used the exact value yi = y(xi) for the step

• the global error of an explicit one-step method is ...

– GEi+1 = y(xi+1) - yi+1

– the difference between the true value and the computed value

Unit V - Differential equations 34

Assessing methods

• GE is the most interesting quantity but it is most easily

assessed using the LTE

• an explicit one-step method is ...

convergent if GE $ 0 as h $ 0

• example: Euler’s method has ...

– an O(h2) local truncation error and

– an O(h) global error

– the latter is what we are interested in to assess the method

– can also show that Euler is convergent

Unit V - Differential equations 35

Taylor methods

• the solution to y' =f(x,y), y(x0)=x0 is
– automatically differentiable

– suppose it’s also twice differentiable

– then calculate

Unit V - Differential equations 36

Taylor methods

• the Taylor expansion about x0 is

• second order approximation gives

• giving the O(h2) Taylor scheme ...

Unit V - Differential equations 37

Second order Taylor method

• if y is differentiable enough we can get kth order Taylor
schemes too
– Euler’s method is the first order Taylor scheme (slide 16)

• Taylor methods require symbolic partial derivatives
– so not often used in practice

– how can we make them practicable?

Unit V - Differential equations 38

Runge-Kutta methods

• to avoid evaluating the derivatives required for the Taylor
method ...
– approximate these by a weighted average using only f(x,y)

function evaluations

– can combine the information from several Euler-type steps taken
across the interval

– each Euler step requires evaluation of f(x,y) only once

• Runge-Kutta methods of different orders are possible
– correspond to the Taylor method being approximated

– called R-K2, R-K3 etc

Unit V - Differential equations 39

Runge-Kutta methods

• an explicit Runge-Kutta method of order N looks like this:

with

Unit V - Differential equations 40

Runge-Kutta methods

• c1, ..., cN are called the RK nodes
– typically c1=0 and often cN=1

– determines x-locations where the ‘trial derivatives’ are to be taken

• k1, ..., kN are called the RK weights
– gives the linear combination of ‘trial derivatives’ used to estimate

the average slope across the step

• the lower triangular A = (ai,j) is called the RK matrix
– determines the values used for ‘trial derivatives’ to be combined

• the choice of nodes, weights, and the RK matrix defines
the explicit R-K method (ERK)
– there are also implicit R-K methods for which A is not lower-

triangular [less utilitarian and less common than ERK methods]

• the R-K tableau k|c|A displays the R-K method simply

Unit V - Differential equations 41

Classical R-K2 methods

• is the explicit midpoint method

• is the explicit trapezoid method

• is Heun’s method

Unit V - Differential equations 42

Classical R-K4 method

• is the classical R-K4 method

Unit V - Differential equations 43

Finding the weights for R-K4

• the slope function f(x,y) is evaluated four times per h step
– once at the start point (1)

– twice at trial midpoints (2&3)

– once at a trial endpoint (4)

• a weighted average of these slopes updates yj to yj+1

Unit V - Differential equations 44

Example: RK-4 method

Use the R-K4 method to solve y' = x2y, y(0)=1 with h=0.05

[the exact solution is y = exp(x3/3)].

Unit V - Differential equations 45

Choosing an R-K method

• R-K4 requires four evaluations of the righthand side
function per h step

• superior to R-K2 provided twice as large step size gives
better accuracy
– often true, usually true, but....not always

– remember high order does not always imply high accuracy

• the availability of a variety of algorithms is important
for solving ODE problems

Unit V - Differential equations 46

R-K methods

• almost always successful, but....

• only moderate accuracy and...

• not the most efficient generally

• R-K methods are the workhorse of ODE solving

• internal consistency can be monitored to keep track of
inaccuracy, and step-size adjusted on the fly
– adaptive step-size algorithms

– local truncation error can be used to estimate the global order

– step-size adjusted to meet specified tolerance criteria

Unit V - Differential equations 47

Setting up numerical routines

• algorithm routine
– sets up the dependent yj’s at the starting value x

– calculates new values for the dependent yj’s at x+h

– provides information required for quality control

• stepper routine
– calls the algorithm routine

– decides whether to accept the values, or....

– reject the h step and call the algorithm with a smaller step-size

– finds the largest step-size compatible with specified performance

• driver routine
– starts and stops the integration

– stores intermediate values

– acts as user-interface

Unit V - Differential equations 48

Matlab implementation

• ode23
– simultaneous R-K2 and R-K3 methods

• ode45
– simultaneous R-K4 and R-K5 methods

• these routines use
– an adaptive step-size and ...

– monitor the accuracy

• the implementation of the algorithm shares intermediate
slope values
– reduces the number of function evaluations per step

Unit V - Differential equations 49

Using Matlab functions

• [x,y] = ode45(diffeq,xn,y0)

• [x,y] = ode45(diffeq,[x0 xn],y0)

• [x,y] = ode45(diffeq,[x0 xn],y0,options)

• [x,y] = ode45(diffeq,[x0 xn],y0,options,arg1,arg2,...)

• diffeq = name of m-file (string) that evaluates f(x,y)

• [x0 xn] = vector defining integration interval

– default x0 = 0, in which case only xn has to be given

• y0 = initial condition

• options = datastructure for adjusting control parameters

Unit V - Differential equations 50

Controlling Matlab functions

• default control parameters can be adjusted with the
odeset function:

options = odeset(‘paramname’,paramvalue,)

[x,y] = ode45(diffeq,xn,y0,options)

• the standard ‘paramname’ list is
– applicable to all (relevant) Matlab ode solvers

• example
 options = odeset(‘RelTol’,1e-6,’MaxStep’,0.2)

• arg1,arg2,... pass-through parameters to adjust diffeq
function
– requires options to be used, but....

– a null matrix [] can be used if none of default options are to be
adjusted: [x,y] = ode45(diiffeq, xn, y0,[],alpha, beta)

Unit V - Differential equations 51

R-K4 for systems of ODEs

• each equation has a set of trial slopes g1,...,g4, but....

• each slope in general depends on xj, and ALL the yj

values for each equation

• so all g1’s have to be evaluated before any g2’s, then...

• all g2’s have to be evaluated before any g3’s, then...

• all g3’s have to be evaluated before any kg’s, then...

• the g4’s can be found for each equation, then....

• the yj values can ALL be incremented to the next step

• ode45 can solve a system of ODEs too

– the derivative function and initial value need to be
column vectors

