Unit V

Differential Equations

Unit V - Differential equations 1

Differential equations

+ explicit one-step methods
— Euler method
— improved Euler method
— analysis of explicit methods
* Runge-Kutta methods
+ adaptivity and stiffness
* multi-step methods

Unit V - Differential equations

Integration of ODEs

» ODE = ordinary differential equation

— involves functions of a single variable and the derivatives
» order = the highest derivative
* we concentrate on solving

Integration of ODEs

dy R
dzy dy \—F\\\ E = Z(l)
Tz Tl g =) i
E] ’—L/ == r(z) — g(z)z(x)

— first order ODEs
— systems of first order ODEs « use the intermediate variable z(x) as shown
because... - first we examine methods for numerical solution of a
— a higher order ODE can be reduced to an equivalent system of single first order equation
first order ODEs
Unit V - Differential equations 3 Unit V - Differential equations
First order ODE System of first order ODEs

 the general first order ODE is

dy ; dy _ oo
s flt.y) OR peie flx,y)

« fis an arbitrary function
* y=y(t) ory = y(x) according to context
— independent variable often is t (time) to reflect ODE use in a
dynamic problem

Unit V - Differential equations 5

* most general is a coupled set of N ODEs

M:L(.r.yl un). i=1,....N
dr

« given functions f; that define the ODE

« find function(s) y;(x) called solutions of the ODE
« this process is called integrating the ODE

* we could ask first about uniqueness

Unit V - Differential equations

Uniqueness of solutions

» to get a unique solution you need some constraints on y;
« these are called boundary conditions

— algebraic relationships between the solutions

— defined at specified discrete points

— not valid elsewhere

— simplest is to specify y, values at given point(s)

— most complex is a system of nonlinear equations relating the

solution functions (differential algebraic equations = DAEs)

Unit V - Differential equations 7

Boundary conditions

the type of boundary conditions determines the numerical
tactics which work best
initial value problem (IVP)
— given values yj(x,) for all the y; at the same initial point xy
— to find values of y,(x;) at some final point x;
— values y; = y|(x;) at discrete intermediate points x;, X, < X, < x;may
also be required
2-point boundary value problem
— some values given as Y;(X,)
— other values given at y;(x;)
— a more difficult problem

the general first order IVP is y' = f(x,y), y(Xo)=Y,

Unit V - Differential equations 8

Connection to definite integral

« if y is a function only of x a first order IVP is just a definite
integral

o y'=1(x), y(Xo)=Y, is the same as

ylx) =y + f flz)dz
xg
* so we could apply numerical quadrature techniques to
solve it

« we know that many integrals have no unique closed form
analytical solution

* s0 we can expect existence of solutions to the general IVP
will be more problematic

« we tackle the problem numerically

Unit V - Differential equations 9

Use iterations to solve an IVP

we want the solution y(x)

— or specifically y(x;) for some value x = x; of interest

approximate y(x) by a sequence of discrete values

y(XO)l y(X1)1 y(x2)! L) y(xf)

— start at the initial x-value x,

— increment by step h

— arrive at the final x-value x;
example: solve y' = sin(x2), y(0)=0

— for a simple case like this [i.e. y=f(x) only] something like trapezoid

integration works

— the Matlab functions trapz and cumtrapz are useful to illustrate

numerical methods for IVPs follow this kind of step-by-step
method to walk to the solution

Unit V - Differential equations 10

Trapezoidal scheme

+ in the simple case we can get the next y; value in one
step

h, o
y1 = yo + 5(flro) + flan)
* but this doesn’t work for the general case
hoo ,) .
ur = w0 + 5 (flro.vo) + flai.m))

+ the unknown y, appears on both sides of the equation
— we can't evaluate f(x,,y,) because we don’t know y, yet

Unit V - Differential equations "

Trapezoidal scheme
write the equation as implicitly defining y, and solve
Y1 — Yo — _i;(f(-l’m- go) + fle,) =0

using something like Newton’s method

repeat the process at each step to get y,, yj, values
this is called the trapezoidal scheme

— an implicit method

— useful for some special cases (e.g. stiff equations)

— more efficient explicit methods are available

Unit V - Differential equations 12

Explicit approach

Euler tactics:
— approximate dy/dx by a forward difference A'f = Ay/Ax
— multiply the equation by Ax

— you get algebraic formulas for the change y, as x is stepped one
step-size h = Ax

— if his ‘small enough’ you MAY get a good approximation to the
solution

in practice ... Euler au nature is

— not very accurate

— not very stable

in theory... it is the fundamental conceptual basis for most
ODE solution methods:

add small increments of derivatives (right hand side
functions) times step-sizes to your functions

Unit V - Differential equations 13

Euler tactics by first difference

Y flry)

yla + h) —y(r) .
ylo+ h) —ylr) flr.y)
h
ylo+h) = ylx)+hf(r.y)

I

» so we define the Euler step by
Yigr = Ui +Hhf(x)

« we neglect the truncation errors introduced by using first
differences

Unit V - Differential equations 14

Euler's method

yx)

x| X7 X3 x

the derivative at the starting point of each interval is
extrapolated to find the next function value

Yier = Yi + h (X))

Unit V - Differential equations 15

Euler tactics by Taylor series

» the Euler step can also be derived from a truncated
Taylor series
) . o o,
ylwo + 1) = ylao) +hy'(xo) + Sy (7)
~ ylzo) + hy (o)
= wo+ hf{zo.y(x0))
v = Yo+ hi(vo, vo)

* y"must exist for this to work

- truncation error is O(h2) for one step so ...
» the method has O(h) accuracy

Unit V - Differential equations 16

Euler is unstable

the Euler step relies on first differences so ...

we cannot really e x p e c t stability

truncation error
— accuracy is O(h) at a fixed point x
— so you can improve accuracy by reducing stepsize but ...
— ... only if you stay at the same x value

— if x moves the solution walks away across the one-parameter set
of solution curves

— error grows with increasing x and decreases with decreasing h
what about roundoff error?

— also an issue

— must be wary of making h too small

Unit V - Differential equations 17

Example: Euler steps

Apply Euler steps to the ODE IVP y' = 1+y2, y(0)=1. True solution is
y(x)=tan(x+n/4). Use h=0.5 and solve over [0,2].

Unit V - Differential equations 18

Example: Euler steps are O(h)

Apply Euler steps to the ODE IVP y' =y, y(0)=1. True solution is
y(x)=ex. Start with h=0.5, continuously halve the step size, and check
the error at each stage.

Unit V - Differential equations 19

Improving the Euler step

» Euleris O(h) because
« it uses f(x;y;) to extrapolate across the interval [x;,x;,4] to
get a value for y(X;,4)
— in reality the slope is changing across that interval
— ... and possibly rapidly
« the trapezoidal scheme gets O(h?) because
it uses values at BOTH endpoints to estimate the slope
but
— it’s an implicit method, so less useful in practice
» viewed in terms of quadrature
— Euler uses the left endpoint scheme
— trapezoidal uses the trapezoid method
* a midpoint scheme is a good alternative

Unit V - Differential equations 20

Midpoint schemes

« we use the midpoint quadrature method to get the
midpoint scheme for ODEs:

Yeir1 = flra)
= Wit hf(rpe vigre)
— here we have
Tipipa = X+ R/2
Yinrpz & Wlrigap)
— but we don’t have an estimate for y(x,,4,) of course
* so how to get an explicit method out of this?

Unit V - Differential equations 21

Improving the Euler step: geometric

y(x)

%}/_t_rﬁ‘! -------- 9
Do G &

« using f(x,y) at the left starting point (1) to ...

« find the midpoint (2)

» then use f(x,y) at the midpoint (2) to update (1) and ...
« find a better path to the end point (3) where x, = x;+h

Unit V - Differential equations 22

Improving the Euler step: algebraic

* we estimate the y-value at the midpoint by
h
Yivhf2 = Yi + Eif(-!'i- i)

— both x and y values at the midpoint are used to update the
solution

— the slope for the real step across the interval is estimated using
an Euler step and ...

adjusted to improve the overall performance
— symmetry cancels first order error terms, so the method is O(h?)

Unit V - Differential equations 23

Improved Euler methods

« the explicit midpoint method is one way to improve Euler

h

h .
5 Yit Ef(-rj- i)

Yj+1 = yi + hfle; +

— the (unknown) y value at the midpoint is estimated using an Euler
step

« the explicit trapezoid method is another alternative

Uir1 =i+ R (f‘:-"i- yi) + fla; +2h-- v + hf(e))

— the (unknown) y value at the right endpoint is estimated using an
Euler step

Unit V - Differential equations 24

Example: Improved Euler method

Solve y' = x + y2, y(0) =1 using the explicit midpoint method with step
sizeh=0.1.

Unit V - Differential equations 25

Example: Improved Euler method

Solve y'=x -y, y(1) =1 using the explicit midpoint scheme
with h = 0.1 [the exact solutionisy = x - 1 + e'*]

Unit V - Differential equations 26

Predictor-corrector shemes

* a predictor-corrector method turns an implicit scheme
into an explicit one
— the updated y-value is written as

Yiv1 = f(¥ir1, P15 Pn)

= Py, -, P, @re parameters, e.g. x;, y; etc.
the explicit scheme (the predictor) is used to get the RHS above
the implicit scheme (the corrector) is used to improve the solution

» repeated prediction-correction steps can be used

Unit V - Differential equations 27

Three ways to reduce error

1. use a higher-order method
— more difficult to program
— require additional differentiability conditions
2. use a smaller step size h
— takes longer to converge
— can lead to propagation of roundoff error
— converges to the exact solution of the ODE in the absence of
roundoff error
3. use repeated corrections
— takes longer to calculate
— converges to an exact solution of a discrete approximation to the
ODE
» there is no RIGHT way hence the variety of
available methods

Unit V - Differential equations 28

Step sizes

« second order methods use
— two function evaluations to take ...
— astep of size h

« first order methods can use
— two function evaluations to take ...
— 2 steps of size h/2

« forsmall h

— the O(h?) error of the second-order method is almost certainly
smaller than ...

— the O(h/2) error of the first-order method and half-size step

» choose the step size as large as is consistent with
desired accuracy

Unit V - Differential equations 29

Heun’s method

* Heun’s method uses the predictor

kBr = hf(zsuyy)
Yirl = Yj+ ke
with the corrector
h
ky = —[flxg,) +3f (x5 +2R/3, 35 + 201 /3)]

4
« this is a weighted average of

— 1/4 times the slope at the left endpoint and ...
— 3/4 times the slope 2/3 of the way along the interval

« the method is O(h?)

Unit V - Differential equations 30

The theta method

the theta method uses a weighting
Yiv1 = Ui + ROF (x5, 05) + (1 =) Flajpn. Yiar))

— Euleris6=1
— trapezoidal scheme is 6 = 1/2
— backward (or implicit) Euler is 8 = 0

Yivt =¥ + (201, y501)

all theta methods are O(h) except the trapezoidal scheme

Unit V - Differential equations 31

Explicit one-step methods
« an explicit one-step method is of the form
Yivl = Yy + hPrlx;.y.0)

— the increment function ®y depends on f and its derivatives

— explicit because everything is known here and...

— one-step because only one step is used to get the next y-value
« an implicit one-step method involves unknown quantities

on the RHS of the step equation

— backwards Euler %41 = 4(2. 2501, %5 Yja1)

— all theta methods (except for Euler itself)

* an explicit multi(k)-step method uses a similar formula
with k previous y values to get the next one

Unit V - Differential equations 32

Two ways to assess error

the local truncation error of an explicit one-step method at
a point x; is ...
= LTEi1 = Vier - [y(x) + hd(x;y(x),h)]
— the difference between y(x;,;) and the value we would have got for
Yi+4 if we had used the exact value y, = y(x;) for the step

the global error of an explicit one-step method is ...
= GEit = ¥(Xis1) - Viaq
— the difference between the true value and the computed value

Unit V - Differential equations 33

Assessing methods

« GE is the most interesting quantity but it is most easily
assessed using the LTE
* an explicit one-step method is ...
convergentif GE—-0ash —=0
« example: Euler's method has ...
— an O(h?) local truncation error and
— an O(h) global error
— the latter is what we are interested in to assess the method
— can also show that Euler is convergent

Unit V - Differential equations 34

Taylor methods

the solution to y' =f(x,y), y(Xg)=Xg s
— automatically differentiable

— suppose it’s also twice differentiable

— then calculate

" d ,, .
v = —y(2)
i e AC)
d ..
= oflryla)
_ Ofer ofvy
T drdr | Hyor
af af ..
= — .14+ —=flx,
ar 1T ny(r u)
= fot fuf(z.y)
Unit V - Differential equations 35

Taylor methods
« the Taylor expansion about x; is
p p N]’2 " y 3
(o + h) = ylao) + hy (o) + -4 (o) + O
« second order approximation gives
. L . o,
wlro+h) = yleo) + hy'(ao) + oY (ro)
) LR
o= o+ hflro.yo) + = f(x0. wo)
h

2
= o+ hflro.uo) + 5 (frlzo.wo) + fylro. yo) fxa. 50))

+ giving the O(h?) Taylor scheme ...

Unit V - Differential equations 36

Second order Taylor method

. N .) - o
Yirr =y Ggoy) o (FeCgews) + Fulegup) flg. u5))

« if y is differentiable enough we can get kth order Taylor
schemes too
— Euler's method is the first order Taylor scheme (slide 16)
» Taylor methods require symbolic partial derivatives
— so not often used in practice
— how can we make them practicable?

Unit V - Differential equations 37

Runge-Kutta methods

» to avoid evaluating the derivatives required for the Taylor
method ...

— approximate these by a weighted average using only f(x,y)
function evaluations

— can combine the information from several Euler-type steps taken
across the interval

— each Euler step requires evaluation of f(x,y) only once

* Runge-Kutta methods of different orders are possible
— correspond to the Taylor method being approximated
— called R-K2, R-K3 etc

Unit V - Differential equations 38

Runge-Kutta methods

* an explicit Runge-Kutta method of order N looks like this:

Yjr1 = Y5 + h{krgr +kaga + -+ knaw)

Runge-Kutta methods

* ¢4, ..., Cyare called the RK nodes

— typically c,=0 and often c\=1

— determines x-locations where the ‘trial derivatives’ are to be taken
* Ky, ..., kyare called the RK weights

with — gives the linear combination of ‘trial derivatives’ used to estimate
the average slope across the step
g = flr;+eihy;) + the lower triangular A = (a;;) is called the RK matrix
g2 = flx;+eah,y;+ashgr) — determines the values used for ‘trial derivatives’ to be combined
g3 = f(x;+esh,y; +asihg + asshgs) « the choice of nodes, weights, and the RK matrix defines
the explicit R-K method (ERK)
: — there are also implicit R-K methods for which A is not lower-
gy = [flxj+exh,y +anihg +anvzhgr + -+ any_1hgy_1) triangular [less utilitarian and less common than ERK methods]
» the R-K tableau k|c|A displays the R-K method simply
Unit V - Differential equations 39 Unit V - Differential equations 40
Classical R-K2 methods Classical R-K4 method
0]o) L Lo
. .|, isthe explicit midpoint method f11 1
212 h h : . 1 % g 1 is the classical R-K4 method
Yi+1 =Y; +]l.f(_:].j + 5-.‘1‘] + Ef(lj Yi)) % 110 0 1
7 1 1 1 1
. 1 is the explicit trapezoid method Yie1 = it h (ot cm+cmt+-m
111 G 3 3 G
Flas oy + flaeg + hoyy + hf(es,y) g1 = flxju;)
.Uj+1=yg+h(L "2 1 AR I Jl .
g2 = f (;r'j + Sh’”J —+ —hyl)
2 2
1|0 . , 1 1
* 4|al|e IisHeun’s method g3 = Slaj+5hou+ She
il3la “ 2
m = f (53'_7 + h:.U] + hg3)
Unit V - Differential equations 4 Unit V - Differential equations 42

Finding the weights for R-K4

« the slope function f(x,y) is evaluated four times per h step
— once at the start point (1)
— twice at trial midpoints (2&3)
— once at a trial endpoint (4)

+ a weighted average of these slopes updates y; to y;,

Unit V - Differential equations 43

Example: RK-4 method

Use the R-K4 method to solve y' = x?y, y(0)=1 with h=0.05
[the exact solution is y = exp(x®/3)].

Unit V - Differential equations 44

Choosing an R-K method

* R-K4 requires four evaluations of the righthand side
function per h step

« superior to R-K2 provided twice as large step size gives
better accuracy
— often true, usually true, but....not always
— remember high order does not always imply high accuracy

+ the availability of a variety of algorithms is important
for solving ODE problems

Unit V - Differential equations 45

R-K methods

almost always successful, but....

only moderate accuracy and...

not the most efficient generally

R-K methods are the workhorse of ODE solving

internal consistency can be monitored to keep track of
inaccuracy, and step-size adjusted on the fly

— adaptive step-size algorithms

— local truncation error can be used to estimate the global order
— step-size adjusted to meet specified tolerance criteria

Unit V - Differential equations 46

Setting up numerical routines

« algorithm routine
— sets up the dependent y;'s at the starting value x
— calculates new values for the dependent y;'s at x+h
— provides information required for quality control
» stepper routine
— calls the algorithm routine
— decides whether to accept the values, or....
— reject the h step and call the algorithm with a smaller step-size
— finds the largest step-size compatible with specified performance
« driver routine
— starts and stops the integration
— stores intermediate values
— acts as user-interface

Unit V - Differential equations 47

Matlab implementation
ode23

— simultaneous R-K2 and R-K3 methods
ode45
— simultaneous R-K4 and R-K5 methods
these routines use
— an adaptive step-size and ...
— monitor the accuracy
the implementation of the algorithm shares intermediate
slope values
— reduces the number of function evaluations per step

Unit V - Differential equations 48

Using Matlab functions

[x,y] = ode45(diffeq,xn,y0)

[x,y] = ode45(diffeq,[x0 xn],y0)

[x,y] = ode45(diffeq,[x0 xn],y0,0ptions)

[x,y] = ode45(diffeq,[x0 xn],y0,options,arg1,arg2,...)
diffeq = name of m-file (string) that evaluates f(x,y)

[x0 xn] = vector defining integration interval
— default x0 = 0, in which case only xn has to be given

y0 = initial condition
options = datastructure for adjusting control parameters

Unit V - Differential equations 49

Controlling Matlab functions

default control parameters can be adjusted with the
odeset function:
options = odeset(‘paramname’,paramvalue,)
[x,y] = ode45(diffeq,xn,y0,options)
the standard ‘paramname’ list is
— applicable to all (relevant) Matlab ode solvers
example
options = odeset(‘RelTol’,1e-6,’'MaxStep’,0.2)
arg1,arg2,... pass-through parameters to adjust diffeq
function
— requires options to be used, but....

— anull matrix [] can be used if none of default options are to be
adjusted: [x,y] = ode45(diiffeq, xn, y0,[],alpha, beta)

Unit V - Differential equations 50

R-K4 for systems of ODEs

each equation has a set of trial slopes g;,...,9,4, but....

each slope in general depends on x;, and ALL the y;
values for each equation

so all g,’s have to be evaluated before any g,’s, then...
all g,’s have to be evaluated before any gs’s, then...

all g5's have to be evaluated before any ks, then...
the g,’s can be found for each equation, then....

the y, values can ALL be incremented to the next step
ode45 can solve a system of ODEs too

— the derivative function and initial value need to be
column vectors

Unit V - Differential equations 51

