

Example: Euler steps are $O(h)$ Apply Euler steps to the ODE IVP y' = y, y(0)=1. True solution is $y(x)=e^x$. Start with h=0.5, continuously halve the step size, and check the error at each stage.	 Improving the Euler step Euler is O(h) because it uses f(x_i,y_i) to extrapolate across the interval [x_i,x_{i+1}] to get a value for y(x_{i+1}) in reality the slope is changing across that interval and possibly rapidly the trapezoidal scheme gets O(h²) because it uses values at BOTH endpoints to estimate the slope but it's an implicit method, so less useful in practice viewed in terms of quadrature Euler uses the left endpoint scheme trapezoidal uses the trapezoid method
Unit V - Differential equations 19	Unit V - Differential equations 20

 Setting up numerical routines algorithm routine sets up the dependent y's at the starting value x calculates new values for the dependent y's at x+h provides information required for quality control stepper routine calls the algorithm routine decides whether to accept the values, or reject the h step and call the algorithm with a smaller step-size finds the largest step-size compatible with specified performance driver routine stores intermediate values acts as user-interface 	 Matlab implementation ode23 simultaneous R-K2 and R-K3 methods ode45 simultaneous R-K4 and R-K5 methods these routines use an adaptive step-size and monitor the accuracy the implementation of the algorithm shares intermediate slope values reduces the number of function evaluations per step
Unit V - Differential equations 47	Unit V - Differential equations 48

Using Matlab functions

- [x,y] = ode45(diffeq,xn,y0)
- [x,y] = ode45(diffeq,[x0 xn],y0)
- [x,y] = ode45(diffeq,[x0 xn],y0,options)
- [x,y] = ode45(diffeq,[x0 xn],y0,options,arg1,arg2,...)
- *diffeq* = name of m-file (string) that evaluates f(x,y)
- [x0 xn] = vector defining integration interval
 default x0 = 0, in which case only xn has to be given
- y0 = initial condition
- options = datastructure for adjusting control parameters

Unit V - Differential equations

Controlling Matlab functions

 default control parameters can be adjusted with the odeset function:

options = odeset('paramname',paramvalue,) [x,y] = ode45(diffeq,xn,y0,options)

- the standard 'paramname' list is
- applicable to all (relevant) Matlab ode solversexample
 - options = odeset('RelTol', 1e-6, 'MaxStep', 0.2)
- arg1,arg2,... pass-through parameters to adjust diffeq function
 - requires options to be used, but
 - a null matrix [] can be used if none of default options are to be adjusted: [x,y] = ode45(diiffeq, xn, y0,[],alpha, beta)

50

Unit V - Differential equations

R-K4 for systems of ODEs

- each equation has a set of trial slopes g₁,...,g₄, but....
- each slope in general depends on $\boldsymbol{x}_{j},$ and ALL the \boldsymbol{y}_{j} values for each equation
- so all g₁'s have to be evaluated before any g₂'s, then...
- all g₂'s have to be evaluated before any g₃'s, then...
- all g₃'s have to be evaluated before any k_a's, then...
- the g₄'s can be found for each equation, then....
- the y_i values can ALL be incremented to the next step
- ode45 can solve a system of ODEs too
 - the derivative function and initial value need to be column vectors

Unit V - Differential equations

51

49