

Integration of ODEs

- ODE = ordinary differential equation
- involves functions of a single variable and the derivatives
- order = the highest derivative
- we concentrate on solving
- first order ODEs
- systems of first order ODEs
because...
- a higher order ODE can be reduced to an equivalent system of first order ODEs

Integration of ODEs

$$
\begin{aligned}
& \frac{d y}{d x}=z(x) \\
& \frac{d z}{d x}=r(x)-q(x) z(x)
\end{aligned}
$$

- use the intermediate variable $z(x)$ as shown
- first we examine methods for numerical solution of a single first order equation

First order ODE

- the general first order ODE is

$$
\frac{d y}{d t}=f(t, y) \quad \text { OR } \quad \frac{d y}{d x}=f(x, y)
$$

- f is an arbitrary function
- $y=y(t)$ or $y=y(x)$ according to context
- independent variable often is t (time) to reflect ODE use in a dynamic problem

System of first order ODEs

- most general is a coupled set of N ODEs

$$
\frac{d y_{i}(x)}{d x}=f_{i}\left(x, y_{1}, \ldots, y_{N}\right), \quad i=1, \ldots, N
$$

- given functions f_{i} that define the ODE
- find function(s) $y_{i}(x)$ called solutions of the ODE
- this process is called integrating the ODE
- we could ask first about uniqueness

Uniqueness of solutions

- to get a unique solution you need some constraints on y_{i}
- these are called boundary conditions
- algebraic relationships between the solutions
- defined at specified discrete points
- not valid elsewhere
- simplest is to specify y_{i} values at given point(s)
- most complex is a system of nonlinear equations relating the solution functions (differential algebraic equations $=D A E s$)

Boundary conditions

- the type of boundary conditions determines the numerical tactics which work best
- initial value problem (IVP)
- given values $y_{i}\left(x_{s}\right)$ for all the y_{i} at the same initial point x_{s}
- to find values of $y_{i}\left(x_{f}\right)$ at some final point x_{f}
- values $y_{i j}=y_{i}\left(x_{j}\right)$ at discrete intermediate points $x_{j}, x_{s}<x_{j}<x_{f}$ may also be required
- 2-point boundary value problem
- some values given as $y_{i}\left(x_{s}\right)$
- other values given at $y_{i}\left(x_{f}\right)$
- a more difficult problem
- the general first order IVP is $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$

Connection to definite integral

- if y is a function only of x a first order IVP is just a definite integral
- $y^{\prime}=f(x), y\left(x_{0}\right)=y_{0}$ is the same as

$$
y(x)=y_{0}+\int_{x_{0}}^{x} f(z) d z
$$

- so we could apply numerical quadrature techniques to solve it
- we know that many integrals have no unique closed form analytical solution
- so we can expect existence of solutions to the general IVP will be more problematic
- we tackle the problem numerically

Trapezoidal scheme

- in the simple case we can get the next y_{i} value in one step

$$
y_{1}=y_{0}+\frac{h}{2}\left(f\left(x_{0}\right)+f\left(x_{1}\right)\right)
$$

- but this doesn't work for the general case

$$
y_{1}=y_{0}+\frac{h}{2}\left(f\left(x_{0}, y_{0}\right)+f\left(x_{1}, y_{1}\right)\right)
$$

- the unknown y_{1} appears on both sides of the equation - we can't evaluate $f\left(x_{1}, y_{1}\right)$ because we don't know y_{1} yet

Use iterations to solve an IVP

- we want the solution $y(x)$
- or specifically $y\left(x_{f}\right)$ for some value $x=x_{f}$ of interest
- approximate $y(x)$ by a sequence of discrete values
$y\left(x_{0}\right), y\left(x_{1}\right), y\left(x_{2}\right), \ldots, y\left(x_{f}\right)$
- start at the initial x-value x_{0}
- increment by step h
- arrive at the final x-value x_{f}
- example: solve $y^{\prime}=\sin \left(x^{2}\right), y(0)=0$
- for a simple case like this [i.e. $y=f(x)$ only] something like trapezoid integration works
- the Matlab functions trapz and cumtrapz are useful to illustrate
- numerical methods for IVPs follow this kind of step-by-step method to walk to the solution

Trapezoidal scheme

- write the equation as implicitly defining y_{1} and solve

$$
y_{1}-y_{0}-\frac{h}{2}\left(f\left(x_{0}, y_{0}\right)+f\left(x_{1}, y_{1}\right)\right)=0
$$

using something like Newton's method

- repeat the process at each step to get $\mathrm{y}_{2}, \mathrm{y}_{3}, \ldots$. values
- this is called the trapezoidal scheme
- an implicit method
- useful for some special cases (e.g. stiff equations)
- more efficient explicit methods are available

Explicit approach

- Euler tactics:
- approximate $d y / d x$ by a forward difference $\Delta^{1} f=\Delta y / \Delta x$
- multiply the equation by Δx
- you get algebraic formulas for the change y_{i} as x is stepped one step-size $\mathrm{h}=\Delta \mathrm{x}$
- if h is 'small enough' you MAY get a good approximation to the solution
- in practice ... Euler au nature is
- not very accurate
- not very stable
- in theory... it is the fundamental conceptual basis for most ODE solution methods:
- add small increments of derivatives (right hand side functions) times step-sizes to your functions

Euler tactics by first difference

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
\frac{y(x+h)-y(x)}{h} & \approx f(x, y) \\
y(x+h) & \approx y(x)+h f(x, y)
\end{aligned}
$$

- so we define the Euler step by

$$
y_{i+1}=y_{i}+h f\left(x_{i}, y_{i}\right)
$$

- we neglect the truncation errors introduced by using first differences

Euler's method

- the derivative at the starting point of each interval is extrapolated to find the next function value
- $y_{i+1}=y_{i}+h f\left(x_{i}, y_{i}\right)$

Euler is unstable

- the Euler step relies on first differences so ...
- we cannot really expect stability
- truncation error
- accuracy is $O(\mathrm{~h})$ at a fixed point x
- so you can improve accuracy by reducing stepsize but ...
- ... only if you stay at the same x value
- if x moves the solution walks away across the one-parameter set of solution curves
- error grows with increasing x and decreases with decreasing h
- what about roundoff error?
- also an issue
- must be wary of making h too small

Euler tactics by Taylor series

- the Euler step can also be derived from a truncated Taylor series

$$
\begin{aligned}
y\left(x_{0}+h\right) & =y\left(x_{0}\right)+h y^{\prime}\left(x_{0}\right)+\frac{h^{2}}{2} y^{\prime \prime}(\gamma) \\
& \approx y\left(x_{0}\right)+h y^{\prime}\left(x_{0}\right) \\
& =y_{0}+h f\left(x_{0}, y\left(x_{0}\right)\right) \\
y_{1} & =y_{0}+h f\left(x_{0}, y_{0}\right)
\end{aligned}
$$

- $y^{\prime \prime}$ must exist for this to work
- truncation error is $O\left(\mathrm{~h}^{2}\right)$ for one step so ...
- the method has $O(\mathrm{~h})$ accuracy

Example: Euler steps
Apply Euler steps to the ODE IVP $y^{\prime}=1+y^{2}, y(0)=1$. True solution is $y(x)=\tan (x+\pi / 4)$. Use $h=0.5$ and solve over $[0,2]$.

Example: Euler steps are $O(\mathrm{~h})$

Apply Euler steps to the ODE IVP $y^{\prime}=y, y(0)=1$. True solution is $y(x)=e^{x}$. Start with $h=0.5$, continuously halve the step size, and check the error at each stage.

Improving the Euler step

- Euler is $O(\mathrm{~h})$ because
- it uses $f\left(x_{i}, y_{i}\right)$ to extrapolate across the interval $\left[x_{i}, x_{i+1}\right]$ to get a value for $y\left(x_{i+1}\right)$
- in reality the slope is changing across that interval
- ... and possibly rapidly
- the trapezoidal scheme gets $\mathrm{O}\left(\mathrm{h}^{2}\right)$ because ...
- it uses values at BOTH endpoints to estimate the slope but
- it's an implicit method, so less useful in practice
- viewed in terms of quadrature
- Euler uses the left endpoint scheme
- trapezoidal uses the trapezoid method
- a midpoint scheme is a good alternative

Midpoint schemes

- we use the midpoint quadrature method to get the midpoint scheme for ODEs:

$$
\begin{aligned}
y_{i+1} & =f\left(x_{i}, y_{i}\right) \\
& =y_{i}+h f\left(x_{i+1 / 2}, y_{i+1 / 2}\right)
\end{aligned}
$$

- here we have

$$
\begin{aligned}
x_{i+1 / 2} & =x_{i}+h / 2 \\
y_{i+1 / 2} & \approx y\left(x_{i+1 / 2}\right)
\end{aligned}
$$

- but we don't have an estimate for $\mathrm{y}\left(\mathrm{x}_{\mathrm{i}+1 / 2}\right)$ of course
- so how to get an explicit method out of this?

Improving the Euler step: geometric

- using $f(x, y)$ at the left starting point (1) to ...
- find the midpoint (2)
- then use $f(x, y)$ at the midpoint (2) to update (1) and ...
- find a better path to the end point (3) where $x_{2}=x_{1}+h$

Improving the Euler step: algebraic

- we estimate the y-value at the midpoint by

$$
y_{i+h / 2}=y_{i}+\frac{h}{2} f\left(x_{i}, y_{i}\right)
$$

- both x and y values at the midpoint are used to update the solution
- the slope for the real step across the interval is estimated using an Euler step and ..
- adjusted to improve the overall performance
- symmetry cancels first order error terms, so the method is $O\left(\mathrm{~h}^{2}\right)$

Improved Euler methods

- the explicit midpoint method is one way to improve Euler

$$
y_{j+1}=y_{j}+h f\left(x_{j}+\frac{h}{2}, y_{j}+\frac{h}{2} f\left(x_{j}, y_{j}\right)\right)
$$

- the (unknown) y value at the midpoint is estimated using an Euler step
- the explicit trapezoid method is another alternative

$$
y_{j+1}=y_{j}+h\left(\frac{f\left(x_{j}, y_{j}\right)+f\left(x_{j}+h, y_{j}+h f\left(x_{j}, y_{j}\right)\right.}{2}\right)
$$

- the (unknown) y value at the right endpoint is estimated using an Euler step

Example: Improved Euler method

Solve $y^{\prime}=x+y^{2}, y(0)=1$ using the explicit midpoint method with step size $h=0.1$.

Example: Improved Euler method
Solve $y^{\prime}=x-y, y(1)=1$ using the explicit midpoint scheme with $h=0.1$ [the exact solution is $y=x-1+e^{1-\mathrm{x}}$]

Predictor-corrector shemes

- a predictor-corrector method turns an implicit scheme into an explicit one
- the updated y-value is written as

$$
y_{i+1}=f\left(y_{i+1}, p_{1}, \cdots, p_{n}\right)
$$

$-p_{1}, \ldots, p_{n}$ are parameters, e.g. x_{i}, y_{j} etc.

- the explicit scheme (the predictor) is used to get the RHS above
- the implicit scheme (the corrector) is used to improve the solution
- repeated prediction-correction steps can be used

Three ways to reduce error

1. use a higher-order method

- more difficult to program
- require additional differentiability conditions

2. use a smaller step size h

- takes longer to converge
- can lead to propagation of roundoff error
- converges to the exact solution of the ODE in the absence of roundoff error

3. use repeated corrections

- takes longer to calculate
- converges to an exact solution of a discrete approximation to the ODE
- there is no RIGHT way hence the variety of available methods

Step sizes

- second order methods use
- two function evaluations to take ...
- a step of size h
- first order methods can use
- two function evaluations to take ...
- 2 steps of size h/2
- for small h
- the $O\left(\mathrm{~h}^{2}\right)$ error of the second-order method is almost certainly smaller than
- the $O(\mathrm{~h} / 2)$ error of the first-order method and half-size step
- choose the step size as large as is consistent with desired accuracy

Heun's method

- Heun's method uses the predictor

$$
\begin{aligned}
k_{1} & =h f\left(x_{j}, y_{j}\right) \\
y_{j+1} & =y_{j}+k_{2}
\end{aligned}
$$

with the corrector

$$
k_{2}=\frac{h}{4}\left[f\left(x_{j}, y_{j}\right)+3 f\left(x_{j}+2 h / 3, y_{j}+2 k_{1} / 3\right)\right]
$$

- this is a weighted average of
- $1 / 4$ times the slope at the left endpoint and ...
- $3 / 4$ times the slope $2 / 3$ of the way along the interval
- the method is $O\left(\mathrm{~h}^{2}\right)$

The theta method

- the theta method uses a weighting

$$
y_{j+1}=y_{j}+h\left(\theta f\left(x_{j}, y_{j}\right)+(1-\theta) f\left(x_{j+1}, y_{j+1}\right)\right)
$$

- Euler is $\theta=1$
- trapezoidal scheme is $\theta=1 / 2$
- backward (or implicit) Euler is $\theta=0$

$$
y_{j+1}=y_{j}+h f\left(x_{j+1}, y_{j+1}\right)
$$

- all theta methods are $O(\mathrm{~h})$ except the trapezoidal scheme

Explicit one-step methods

- an explicit one-step method is of the form

$$
y_{j+1}=y_{j}+h \Phi_{f}\left(x_{j}, y_{j}, h\right)
$$

- the increment function Φ_{f} depends on f and its derivatives - explicit because everything is known here and...
- one-step because only one step is used to get the next y-value
- an implicit one-step method involves unknown quantities on the RHS of the step equation
- backwards Euler $y_{j+1}=y\left(x_{j}, x_{j+1}, y_{j}, y_{j+1}\right)$
- all theta methods (except for Euler itself)
- an explicit multi(k)-step method uses a similar formula with k previous y values to get the next one

Two ways to assess error

- the local truncation error of an explicit one-step method at a point x_{i} is ...
$-\operatorname{LTE}_{i+1}=y_{i+1}-\left[y\left(x_{i}\right)+h \Phi\left(x_{i}, y\left(x_{i}\right), h\right)\right]$
- the difference between $y\left(x_{i+1}\right)$ and the value we would have got for y_{i+1} if we had used the exact value $y_{i}=y\left(x_{i}\right)$ for the step
- the global error of an explicit one-step method is ...
$-\mathrm{GE}_{i+1}=\mathrm{y}\left(\mathrm{x}_{\mathrm{i}+1}\right)-\mathrm{y}_{\mathrm{i}+1}$
- the difference between the true value and the computed value

Taylor methods

- the solution to $y^{\prime}=f(x, y), y\left(x_{0}\right)=x_{0}$ is
- automatically differentiable
- suppose it's also twice differentiable
- then calculate

$$
\begin{aligned}
y^{\prime \prime} & =\frac{d}{d x} y^{\prime}(x) \\
& =\frac{d}{d x} f(x, y(x)) \\
& =\frac{\partial f}{\partial x} \frac{\partial x}{\partial x}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial x} \\
& =\frac{\partial f}{\partial x} \cdot 1+\frac{\partial f}{\partial y} f(x, y) \\
& =f_{x}+f_{y} f(x, y)
\end{aligned}
$$

Assessing methods

- GE is the most interesting quantity but it is most easily assessed using the LTE
- an explicit one-step method is ...

$$
\text { convergent if GE } \rightarrow 0 \text { as } \mathrm{h} \rightarrow 0
$$

- example: Euler's method has ...
- an $O\left(\mathrm{~h}^{2}\right)$ local truncation error and
- an $O(h)$ global error
- the latter is what we are interested in to assess the method
- can also show that Euler is convergent

Taylor methods

- the Taylor expansion about x_{0} is

$$
y\left(x_{0}+h\right)=y\left(x_{0}\right)+h y^{\prime}\left(x_{0}\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+O\left(h^{3}\right)
$$

- second order approximation gives

$$
\begin{aligned}
y\left(x_{0}+h\right) & \approx y\left(x_{0}\right)+h y^{\prime}\left(x_{0}\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(x_{0}\right) \\
y_{1} & =y_{0}+h f\left(x_{0}, y_{0}\right)+\frac{h^{2}}{2} f^{\prime}\left(x_{0}, y_{0}\right) \\
& =y_{0}+h f\left(x_{0}, y_{0}\right)+\frac{h^{2}}{2}\left(f_{x}\left(x_{0}, y_{0}\right)+f_{y}\left(x_{0}, y_{0}\right) f\left(x_{0}, y_{0}\right)\right)
\end{aligned}
$$

- giving the $\mathrm{O}\left(\mathrm{h}^{2}\right)$ Taylor scheme ...

Second order Taylor method

$$
y_{j+1}=y_{j}+h f\left(x_{j}, y_{j}\right)+\frac{h^{2}}{2}\left(f_{x}\left(x_{j}, y_{j}\right)+f_{y}\left(x_{j}, y_{j}\right) f\left(x_{j}, y_{j}\right)\right)
$$

- if y is differentiable enough we can get kth order Taylor schemes too
- Euler's method is the first order Taylor scheme (slide 16)
- Taylor methods require symbolic partial derivatives
- so not often used in practice
- how can we make them practicable?

Runge-Kutta methods

- to avoid evaluating the derivatives required for the Taylor method ...
- approximate these by a weighted average using only $f(x, y)$ function evaluations
- can combine the information from several Euler-type steps taken across the interval
- each Euler step requires evaluation of $f(x, y)$ only once
- Runge-Kutta methods of different orders are possible - correspond to the Taylor method being approximated
- called R-K2, R-K3 etc

Runge-Kutta methods

- an explicit Runge-Kutta method of order N looks like this:

$$
y_{j+1}=y_{j}+h\left(k_{1} g_{1}+k_{2} g_{2}+\cdots+k_{N} g_{N}\right)
$$

with
$g_{1}=f\left(x_{j}+c_{1} h, y_{j}\right)$
$g_{2}=f\left(x_{j}+c_{2} h, y_{j}+a_{2,1} h g_{1}\right)$
$g_{3}=f\left(x_{j}+c_{3} h, y_{j}+a_{3,1} h g_{1}+a_{3,2} h g_{2}\right)$
\vdots
$g_{N}=f\left(x_{j}+c_{N} h, y_{j}+a_{N, 1} h g_{1}+a_{N, 2} h g_{2}+\cdots+a_{N, N-1} h g_{N-1}\right)$

Runge-Kutta methods

- $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{N}}$ are called the $R K$ nodes
- typically $c_{1}=0$ and often $c_{N}=1$
- determines x-locations where the 'trial derivatives' are to be taken
- $\mathrm{k}_{1}, \ldots, \mathrm{k}_{\mathrm{N}}$ are called the $R K$ weights
- gives the linear combination of 'trial derivatives' used to estimate the average slope across the step
- the lower triangular $A=\left(\mathrm{a}_{\mathrm{i}, \mathrm{j}}\right)$ is called the $R K$ matrix
- determines the values used for 'trial derivatives' to be combined
- the choice of nodes, weights, and the RK matrix defines the explicit $R-K$ method (ERK)
- there are also implicit R - K methods for which A is not lowertriangular [less utilitarian and less common than ERK methods]
- the R - K tableau $\mathrm{k}|\mathrm{c}| \mathrm{A}$ displays the R-K method simply

Classical R-K2 methods

- | 0 | 0 | |
| :---: | :---: | :---: |
| 1 | $\frac{1}{2}$ | $\frac{1}{2}$ |

is the explicit midpoint method

$$
y_{j+1}=y_{j}+h f\left(x_{j}+\frac{h}{2}, y_{j}+\frac{h}{2} f\left(x_{j}, y_{j}\right)\right)
$$

- | $\frac{1}{2}$ | 0 | |
| :--- | :--- | :--- |
| $\frac{1}{2}$ | 1 | 1 |

is the explicit trapezoid method $y_{j+1}=y_{j}+h\left(\frac{f\left(x_{j}, y_{j}\right)+f\left(x_{j}+h, y_{j}+h f\left(x_{j}, y_{j}\right)\right.}{2}\right)$

- | $\frac{1}{4}$ | 0 | |
| :--- | :--- | :--- |
| $\frac{3}{4}$ | $\frac{2}{3}$ | $\frac{2}{3}$ | is Heun's method

Classical R-K4 method

$$
\begin{aligned}
y_{j+1} & =y_{j}+h\left(\frac{1}{6} g_{1}+\frac{1}{3} g_{2}+\frac{1}{3} g_{3}+\frac{1}{6} g_{4}\right) \\
g_{1} & =f\left(x_{j}, y_{j}\right) \\
g_{2} & =f\left(x_{j}+\frac{1}{2} h, y_{j}+\frac{1}{2} h g_{1}\right) \\
g_{3} & =f\left(x_{j}+\frac{1}{2} h, y_{j}+\frac{1}{2} h g_{2}\right) \\
g_{4} & =f\left(x_{j}+h, y_{j}+h g_{3}\right)
\end{aligned}
$$

Finding the weights for R-K4

- the slope function $f(x, y)$ is evaluated four times per h step
- once at the start point (1)
- twice at trial midpoints (2\&3)
- once at a trial endpoint (4)
- a weighted average of these slopes updates y_{j} to y_{j+1}

Use the R-K4 method to solve $y^{\prime}=x^{2} y, y(0)=1$ with $h=0.05$ [the exact solution is $y=\exp \left(x^{3} / 3\right)$].

Choosing an R-K method

- R-K4 requires four evaluations of the righthand side function per h step
- superior to R-K2 provided twice as large step size gives better accuracy
- often true, usually true, but....not always
- remember high order does not always imply high accuracy
- the availability of a variety of algorithms is important for solving ODE problems

R-K methods

- almost always successful, but....
- only moderate accuracy and...
- not the most efficient generally
- R-K methods are the workhorse of ODE solving
- internal consistency can be monitored to keep track of inaccuracy, and step-size adjusted on the fly
- adaptive step-size algorithms
- local truncation error can be used to estimate the global order
- step-size adjusted to meet specified tolerance criteria

Setting up numerical routines

- algorithm routine
- sets up the dependent y_{j} 's at the starting value x
- calculates new values for the dependent y_{j} 's at $x+h$
- provides information required for quality control
- stepper routine
- calls the algorithm routine
- decides whether to accept the values, or....
- reject the h step and call the algorithm with a smaller step-size
- finds the largest step-size compatible with specified performance
- driver routine
- starts and stops the integration
- stores intermediate values
- acts as user-interface

Matlab implementation

- ode23
- simultaneous R-K2 and R-K3 methods
- ode45
- simultaneous R-K4 and R-K5 methods
- these routines use
- an adaptive step-size and ...
- monitor the accuracy
- the implementation of the algorithm shares intermediate slope values
- reduces the number of function evaluations per step

Using Matlab functions

- $[x, y]=$ ode45(diffeq, $x n, y 0)$
- $[x, y]=$ ode45(diffeq,[x0 xn],y0)
- $[x, y]=$ ode45(diffeq, $[x 0$ xn],y0,options)
- $[x, y]=$ ode45(diffeq,[x0 xn],y0,options,arg1,arg2,...)
- diffeq = name of m-file (string) that evaluates $f(x, y)$
- $[x 0 \mathrm{xn}]=$ vector defining integration interval
- default $x 0=0$, in which case only xn has to be given
- $y 0=$ initial condition
- options = datastructure for adjusting control parameters

R-K4 for systems of ODEs

- each equation has a set of trial slopes $\mathrm{g}_{1}, \ldots, \mathrm{~g}_{4}$, but....
- each slope in general depends on x_{j}, and ALL the y_{j} values for each equation
- so all g_{1} 's have to be evaluated before any g_{2} 's, then...
- all g_{2} 's have to be evaluated before any g_{3} 's, then...
- all g_{3} 's have to be evaluated before any k_{g} 's, then...
- the g_{4} 's can be found for each equation, then....
- the y_{j} values can ALL be incremented to the next step
- ode45 can solve a system of ODEs too
- the derivative function and initial value need to be column vectors

